Metric Spaces and Topology
Lecture 25
$(3) \Rightarrow$ (1). The proof is almost the sane as for $\{0,1\}$.
oman. In a totally bold nitric space, there is a sey-ane $\left(F_{h}\right)$, where each f_{n} is a finite open cover with sexts of cinder $<\frac{1}{4} d$ sit. Fund retinas F_{n}, ie. each set in f_{n+1} is a subset of a serin in F_{n}. Proof. Let $\left(F_{n}^{\prime}\right)$ be a segnecre of finite $\frac{1}{4}$-nets,
 al let $F_{n}^{\prime}:=\left\{B_{i_{n}}(x): x \in F_{n}^{\prime}\right\}$, so it's a wooer if X. Then let F_{n} be the sit of all intersections of shy in $F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{n}^{\prime}$.

Now let U be an open lover of X and suppose for the vartiacy and U doesn't have a finite sabbover.
let $\left(F_{n}\right)$ be the sequence of finite open covers of X given by the leanna above. Thus, by Pigeonhole pries ciph, there
 is a cat $U_{1} \in \mathcal{F}_{1}$ that doessig admit a tinik inbcover with sets is U. similarly, $\exists U_{2} \in F_{2}$ int doesn't $U_{2} \leqslant U_{1}$

Lave a tinite sublover of $U, \ldots \forall U_{n+1} \in F_{n}, U_{n+1} \in U_{n}$ tut doesny admit a firite subcovec. Tin $\left(\bar{U}_{n}\right)$ is a becreasing agcecee of dosed seh of vavishing
(and $)^{B_{2}}(x)$ diamelec, so $\exists_{x} \in \prod_{n} \bar{u}_{n} b_{y}$ the wompletenen of x. But U cover X so $\exists U \in \mathcal{U}$ s.t. $U>x$, hece \exists n s.t. $B_{2}(x) \leq U$ and bence $\bar{U}_{n} \leq U$ benore dian($\left.U_{n}\right)$ $<\frac{1}{n}$. Thus," U_{n} adnits a cover with a singhe ent tron U, conteadicting the vely doice of U_{n}.

Gocllan. In \mathbb{R}^{n} with any of the eqnivaleat atrics $d_{p}, 1 \leq p \leq \infty$, compact sths ane exaith the closed and bdd ones.
$P_{\text {coof. HW }}$

Examples of top-spaces violating (1) \gg (2).
Oader topoloys. Given a botally ordceed sot $(X,<)$, i.e $<$ is a botal order on $X: \forall x, y, z \in X$,
(i) $x \nless x$
(ii) $x<y$ d $y<z \Rightarrow x<z$
(iii) $x<y$ or $y<x$ or $x=5$.

We define the order top on X is generated by the intervats $(a, b):=\{x \in X: a<x<b\}$, for all $a<b$ in X.
Note not the in ithersection of two intervals is again an interval, so the intervals form a basis for his topology.

Example the usual Euclidean top on \mathbb{R} coincides with the order top. with respect to the usual order.

Example (ordinals), let $X:=\omega_{1}$, ie. The first undbl ordinal. Ordinals one well-ordered sots b_{y}, the order \in and each ordinal α is equal to the ordinals less than it, indeed $\alpha=\{\beta: \beta \in \alpha\}$. Taxation \in as a strict well-order < (in particular total order), consider the order top on w, with the caldinal open set $\{0\}$, ie. The basis is horned by isterals (α, β) al $\{0\}, \alpha<\beta$ is ω.
obs 1. $(\alpha, \beta]=(\alpha, \beta+1)$, so $(\alpha, \beta]$ is open.
Cor 2. The order lop a w_{1} is $1^{\text {it }}$ abl.
Proof. Indued, by the observation above, for each $\beta \in W_{1}(100$,
the intervals $(\alpha, \beta], \alpha<\beta$ Rem a neighbourhood basis bee \forall other interval $(\gamma, \delta) \rightarrow \beta$, the interval $(\gamma, \beta] \leq(\gamma, \delta)$. But \exists only ctbly wang $\alpha<\beta$.

Fact 3. The supremum of a ctbl set A of ital ordinals is still a ctbl ordinal.
Proof. Because UA is a transitive set of ordinals, it's an ordinal. Using the fact int $\alpha \leqslant \beta \Leftrightarrow \alpha \leq \beta$ (here $\alpha \leqslant \beta$ means $\alpha \in \beta$ or $\alpha=8$), we see that $\cup A$ is the suprenum $(=$ least upper bound) for A. It remains do not tut UA is abl being a ctbl union of Abl sets.

Claim 4. The order lop. on w_{1} is not compact; in fact it's not even Lindeloff: \exists an open cover with no cell subcover.
Prod. Let U be the over of X consisting of intervals $(0, \alpha)$ at the set $\{0\}, \alpha \in \omega_{1}$.
This doesn'f have a ctbl sab cover $\{0),\left(0, \alpha_{1}\right), \ldots$, $\left(0, \alpha_{n}\right)$,.. heme then $\alpha:=\left(\sup _{n \in \mathbb{N}} \alpha_{n}\right)+1$ is still in ω_{1} by Fact 3, but α is not in any $\left(0, \alpha_{n}\right)$.

Claims. The order top. on ω_{1} is sequentially compact.
Prot. Let $\left(\alpha_{n}\right)$ be a spence of til ordinals. We may assume WLOG but $\left(\alpha_{h}\right)$ doesn't have a constant subsequence because such a subsegnence would le convergent and wed be done. Let $\beta_{1}:=\sup \left\{\alpha_{n}: n \in \mathbb{N}\right\}$, so $\beta_{1} \in w_{1}$ by Fact 3. Only finitely many α_{n} (possibly none) can equal β_{1}, so removing these members re still get an infinite sequence, so the set $\left\{\alpha_{n}: n \in \mathbb{N}\right\} \backslash\left\{\beta_{1}\right\} \neq \varnothing$. Similarly, let $\beta_{2}:=\sup \left\{\alpha_{n}: h \in \mathbb{N}\right\} \backslash\left\{\beta_{1}\right\}$, so $\beta_{2} \leq \beta_{1}$ and still $\left\{\alpha_{n}: n \in \mathbb{N}\right\} \backslash\left\{\beta_{1}, \beta_{2}\right\} \neq \varnothing$. Coutiunin, let $\beta_{3}:=\sup \left\{\alpha_{n}: \alpha \in \mathbb{N}\right\} \backslash\left\{\beta_{1}, \beta_{2}\right\}$ and 10 on. The stysence $\beta_{1} \geq \beta_{2} \geqslant \beta_{3} \geq \ldots$ is a noniccreasing sequence of occlinals, so by well-orclerednen, it must stabilize at sone $k \in \mathbb{N}$, ie. $\beta_{k}=\beta_{k+1}=\beta_{k+2}=\ldots$ Thus, β_{k} is not a max of $\left\{\alpha_{n}: c \in \mathbb{N}\right\} \backslash\left\{\beta_{1}, \ldots, \beta_{k-1}\right\}$, ie. The supremun is wat achieved. It is now not hard to build a subsequence caverging do $\beta:=\beta_{k}$ using the fad that the intervals $(\gamma, \beta], \gamma<\beta$, form a coal neighbourhood basis at β. Inced, enumerate $\{\gamma: \gamma<\beta\}=\left\{\gamma_{l}\right\}_{\ell \in \mathbb{N}}$, so
$B=\left\{\left(\gamma_{e}, \beta\right]\right\}_{l \in \mathbb{N}}$ is a neighb. hasis at β. We way assume WCOL that $B_{l} \geq B_{e+1} \forall C$ by replecing B_{l} with $\bigcap_{i=1} B_{i}$. In other woods, we way assiume that $\left(\gamma_{l}\right)$ isincicasing. For $l=1, \exists_{n}^{\alpha_{n}}$ s.t $\alpha_{n} \in\left(\gamma_{1}, \beta\right]$ so tate one and call it $\alpha_{n_{1}}$.
For $b=2,7^{\infty}{ }_{n}$ s, t. $\alpha_{n} \in\left(\gamma_{2}, \beta\right]$ so take $n_{2}>n_{1}$ with $\alpha_{n_{2}} \in\left(\gamma_{2}, \beta\right]$.
Fer $l=3,7 \infty_{n}$ s.t. $\alpha_{n} \in\left(\gamma_{3}, \beta\right]$ so tatee $u_{3}>n_{2}$ n. $h \quad \alpha_{n_{3}} \in\left(r_{3}, \beta\right]$.
\ldots We get a rabsegeene $\left(\alpha_{n_{l}}\right)$ it. $\forall L \forall l \geqslant L$

To give an example of a soupat space Int ie not seynectially coupcat, we weed the fillowing inpoortant theoven, hich re vill prove nexl tine:

Tychonotf's Theorun (AC) Ay prockect (possibls, wecthl) of wopact rop spaces is coupact (in the product top).

Renark. Mis theorew is equivaled to the Axion of Choice. HW

Example. Consider the product space $10:=10,1, \ldots, g)^{[0,1]}$, ie. all factions from $[0,1]$ to 10 . This is a compact space h, Ty, how's theorem hat:
llama: Dis space is wot sequentially woynact.
port let $\left(f_{n}\right)$ be the sequence of functions froe $[0,1]$ to 10 , here $f_{n}(x):=$ the $n^{\text {th }}$ digit it after " 0 ." is the decimal rep. of x (where we perter the $0 . * * * 999 \ldots$ notation to $0 \times x(* 1) 000 \ldots)$. For example $F_{3}(0,18703 \ldots)=7$. This doesnlt lan a convergent sabsepence. HW

